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Motivation
Prediction  of  protein  3D  structure  from  the  primary  sequence  remains  a 
fundamental and extraordinarily challenging problem [1]. A contact map is a two-
dimensional (2D) projection of the 3D protein. An obvious 2D projection of the 3D 
structure is the matrix of contacting residue pairs, or contact map. Contact maps, or 
similar distance restraints have been proposed as intermediate steps between the 
primary sequence and the 3D structure (e.g. in [2, 3, 4]), for various reasons: unlike 
3D  coordinates,  they  are  invariant  to  rotations  and  translations,  hence  less 
challenging to predict by machine learning systems [4]; quick, effective algorithms 
exist  to  derive  3D  structures  from  them,  for  instance  stochastic  optimisation 
methods  [5,  6],  distance  geometry  [7],  or  algorithms  derived  from  the  NMR 
literature and elsewhere [8]. Most of the literature and the Critical Assessment of 
protein Structure Prediction (CASP) experiments deal  with  binary contact  maps 
with residue pairs (h,k) either in contact (at a certain distance threshold) or not.  
Previously  we  have  shown  that  4-class  distance  maps  are  more  useful  for 
reconstructing 3D models than binary contact maps [14]. Here we construct a more 
difficult problem 10-class maps. The experiment is a preliminary work in order to 
gauge  if  our  machine  learning  method  is  capable  of  learning  this  difficult 
classification scheme. Filtering or cleaning predictions made about protein features 
have been shown to be useful for secondary structure [9,10] and contact density 
[11]. In [12] physical rules were manually constructed in order to clean the contact 
map. In this work we will  also describe a machine learning method for cleaning 
distance maps.

Methods
2D-Recursive Neural Networks (2D-RNN) were previously described in detail in [4] 
and [13] where they were generally described as Directed Acyclic Graph RNN's. 
This is a family of adaptive models for mapping 2D matrices of variable size into 
matrices of the same size. Two distinct 2D-RNN's were used in order to make the 
final prediction. The first 2D-RNN processes the input and produces probabilities, 
O (h,k), about the classification. The second filter 2D-RNN produces classifications 
as a function of global inputs and the predicted probabilities, O (h,k), coming from 
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the first 2D-RNN. The information supplied is: • The average probability of each 
class  located  in  non-overlapping  square  windows.  The  first  windows  centre  is 
located at the residue pair (h,k). I choose the size of the windows to be 11 and the 
number of non-overlapping windows considered around (h,k) to be 15. • Each class 
probability.  •  The  residue  wise  contact  order  (RWCO)  [15].  •  The  number  of  
distance class types for residues h or k • The number of distance class types in 
common with both residues j and k Preliminary tests were carried out on a training 
set of 200 and a testing set of 60 proteins. All proteins have length less than or  
equal to 200 residues. The 10 class distance thresholds are [0,2), [2,4), [4,6), [6,8),  
[8,10),  [10,12),  [12,14),  [14,16),  [16,18),  [18,infinity)  angstrom.  Homology 
information is supplied in a similar manner to [14].

Results
Accuracies  and the size  of  each  class  on the test  set  for  the 10 classes are: 
Accuracy Number of  residue pairs  [0,2)  91.0  5733 [2,4)  95.6  11470 [4,6)  73.1 
17046 [6,8) 60.0 20174 [8,10) 60.1 32814 [10,12) 55.1 43566 [12,14) 48.6 50132 
[14,16) 46.4 55504 [16,18) 40.1 53526 [18,inf] 93.2 323364 Total 74.6 613329 The 
accuracies show that our method is capable of learning this difficult problem. In 
addition, the filter improves the total accuracy by 0.4% (i.e. 24533 residue pairs).  
This work was a preliminary investigation into a difficult classification scheme. In 
the future we will: • Carry out an analysis on a small set (e.g. 50 proteins) to find 
the optimal thresholds for the 10 classes which will maximise the quality of the final 
3D  models.  The  small  improvements  for  the  filter  are  encouraging  but  further 
improvements are necessary in order to make the cleaning algorithm worthwhile in 
a  sequence  to  3D modelling  pipeline.  Future  directions  will  include:  •  A  more 
extensive  investigation  to  find  additional  parameters  which  will  improve  the 
accuracy of the maps. • Rules such as beta-strand residues must have no more 
than 2 close partners could also be easily implemented. • A third machine learning 
layer which would maximise TM-score or minimise RMSD will also be investigated. 
Although, this would be computationally expensive because each predicted contact 
map  would  require  a  3D  model  to  be  reconstructed.  It  may  be  a  worthwhile 
experiment since the ultimate goal of  all  protein prediction methods is the final 
quality of the 3D model.
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