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Motivation
In order to use a 3D model of a protein structure we need to know how good it is,  
as  its  quality  is  proportional  to  its  utility  [1].  Several  different  potential  or 
(pseudo-)energy function have been developed aiming to predict model quality. We 
present here an update of a knowledge-based ModelQuality Assessment Program 
(MQAP) at the residue level which evaluates single protein structure models [2]. 
We use a tree representation of the C alpha trace to train a novel Neural Network  
Pairwise Interaction Field (NN-PIF) to predict the global quality of a model. All the 
inputs  to  NN-PIF  are  derived  from  the  C  alpha  trace  of  the  models  and  the 
sequence of amino Acids associated to it.

Methods
Protein model quality is often measured as the scaled distance between C alphas 
of models to their positions in the native structure after optimal superimposition of 
the structures.  Here only information obtained solely  from the C alpha trace is 
used. First, the C alpha trace of each structure model is represented as a directed  
acyclic  graph (rooted tree),  in  which  the outer  nodes are pairwise  interactions. 
Each  residue  in  the  C  alpha  trace  is  encoded  into  a  vector  describing  its  
environment. Interactions among C alphas are simply characterised by distances 
and  angles,  alongside  the  two  vectors  encoding  the  residues  involved. 
Environments  are  described  by  several  angles,  distances  among  neighbours, 
pseudo-Solvent  Accessibility  (SA),  and  coarse  packing  information.  All  these 
numerical descriptors computed from the C alpha trace are fed into NN-PIF trained 
to predict global quality. In NN-PIF each C alpha (i.e. its interactions with all the 
other C alphas) is mapped into a hidden state, which contains the contribution of  
that residue to the global quality of the structure. Two C alphas are considered as 
interacting if they are closer than a fixed distance threshold (here it used 20A. The 
hidden vectors for all C alphas are then combined and mapped to a global quality  
measure.  NN-PIF  allows  us  to  evaluate  all  the  interactions  at  the  same  time, 
whereas  other  knowledge  based  potentials  generally  evaluate  interactions 
separately. To train the NN-PIF models submitted to previous CASP editions [3] 
are  used,  as  the  main  purpose  of  this  MQAP is  to  rank  models  from dierent 
prediction systems. No native structures are included in the training set. Tests are 
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performed on CASP8 server models, a subset of the PDB REDO [4] database with 
significantly different C traces to their PDB [5] counterparts and several standard 
decoys datasets available at the Decoys'R'Us repository[6].

Results
In our tests on a large set of structures, our model outperforms most other single 
model evaluation methods based on different and more complex protein structure 
representations  in  both  local  and  global  quality  prediction  in  a  real  scenario 
simulation.  NN-PIF  is  also  tested  on  its  ability  to  select  identify  better  native 
structures and native structures among artificial decoys. NN-PIF shows a method 
dependency accuracy but identify positively better native structures as their quality 
increases. NN-PIF allows fast evaluation of multiple di erent C alpha trace structure 
models for a single protein sequence. The method is available upon request from 
the authors. 3D structure prediction method-specific rankers may also built by the 
authors upon request. NN-PIF will be soon available as a web server.
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