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Motivation

In order to use a 3D model of a protein structure we need to know how good it is,
as its quality is proportional to its utility [1]. Several different potential or
(pseudo-)energy function have been developed aiming to predict model quality. We
present here an update of a knowledge-based ModelQuality Assessment Program
(MQAP) at the residue level which evaluates single protein structure models [2].
We use a tree representation of the C alpha trace to train a novel Neural Network
Pairwise Interaction Field (NN-PIF) to predict the global quality of a model. All the
inputs to NN-PIF are derived from the C alpha trace of the models and the
sequence of amino Acids associated to it.

Methods

Protein model quality is often measured as the scaled distance between C alphas
of models to their positions in the native structure after optimal superimposition of
the structures. Here only information obtained solely from the C alpha trace is
used. First, the C alpha trace of each structure model is represented as a directed
acyclic graph (rooted tree), in which the outer nodes are pairwise interactions.
Each residue in the C alpha trace is encoded into a vector describing its
environment. Interactions among C alphas are simply characterised by distances
and angles, alongside the two vectors encoding the residues involved.
Environments are described by several angles, distances among neighbours,
pseudo-Solvent Accessibility (SA), and coarse packing information. All these
numerical descriptors computed from the C alpha trace are fed into NN-PIF trained
to predict global quality. In NN-PIF each C alpha (i.e. its interactions with all the
other C alphas) is mapped into a hidden state, which contains the contribution of
that residue to the global quality of the structure. Two C alphas are considered as
interacting if they are closer than a fixed distance threshold (here it used 20A. The
hidden vectors for all C alphas are then combined and mapped to a global quality
measure. NN-PIF allows us to evaluate all the interactions at the same time,
whereas other knowledge based potentials generally evaluate interactions
separately. To train the NN-PIF models submitted to previous CASP editions [3]
are used, as the main purpose of this MQAP is to rank models from dierent
prediction systems. No native structures are included in the training set. Tests are
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performed on CASP8 server models, a subset of the PDB REDO [4] database with
significantly different C traces to their PDB [5] counterparts and several standard
decoys datasets available at the Decoys'R'Us repository[6].

Results

In our tests on a large set of structures, our model outperforms most other single
model evaluation methods based on different and more complex protein structure
representations in both local and global quality prediction in a real scenario
simulation. NN-PIF is also tested on its ability to select identify better native
structures and native structures among artificial decoys. NN-PIF shows a method
dependency accuracy but identify positively better native structures as their quality
increases. NN-PIF allows fast evaluation of multiple di erent C alpha trace structure
models for a single protein sequence. The method is available upon request from
the authors. 3D structure prediction method-specific rankers may also built by the
authors upon request. NN-PIF will be soon available as a web server.
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