
Enhancing Graph Database Indexing By Suffix Tree
Structure

Bonnici V(1), Di Natale R(1), Ferro A(1), Giugno R(1), Mongiovi M(1),
Pigola G(1), Pulvirenti A(1), Shasha D(2)

(1) Department Of Computer Science, University of catania, Catania

(2) Courant Institute of Mathematical Sciences, New York University, New York

Motivation
Many applications in industry, science, and engineering share the same problem: given a sub-
graph, find its occurrences in a database of graphs. The increasing size of databases applica-
tion requires efficient structure searching algorithms. Examples of such databases and sub-
structure searching methods can be found in computational chemistry and biology. For exam-
ple, in drug discovery, the main task is to find novel bioactive molecules, i.e., chemical com-
pounds that protect human cells against a virus. In computational biology querying for subgra-
phs, matching a specific topology, is useful to find motifs of networks that may have functional
relevance. Finding occurrences of a subgraph in a set of graphs is known to be NP-Complete.
Although graph-to-graph matching algorithms can be used, efficiency considerations suggest
the use of specific techniques to reduce the search space and the time complexity. In a prepro-
cessing phase, each graph of the database is analyzed in order to extract and store its discrimi-
nant features together with the number of their occurrences. Such structures constitute the
graph database index. The features could be either all the paths up to a certain length (Graph-
Grep, GraphFind) or a set of suitable trees or subgraphs (GIndex, FgIndex, Tree+Delta) compu-
ted by mining techniques. For each indexed feature, all graphs containing it are maintained. All
such informations are stored by using a hash table (GraphGrep) or by compacting features in a
trie (GIndex). In the filtering phase, the graph database index is compared with the query index
in order to discard graphs of the database not containing some features present in the query
graph. This phase allows to build a set of graph candidates which will be verified in the mat-
ching phase through a sub-graph matching algorithm. The main drawback of systems based on
the above architecture is the index size, construction time and the filtering time. Therefore,
compact and expressive representations of such index are needed.

Methods
In this work a compact representation of the GraphGrep index is proposed. In GraphGrep, the
feature space is composed by paths of length up to 4. Therefore, paths of greater length con-
tain smaller paths. Moreover, graphs usually have a not large label space (e.g. chemical mole-
cules), thus, the same partial combination of labels could be present several times in the featu-
res of different graphs. Such characteristics of the feature space allow its natural organization
through a Suffix tree. Then, by exploiting the paths sharing the same prefixes the redundancy
of the index is easily reduced. Although such a representation is very natural and simple it is
able to speed up either the index construction and the filtering phase.

Results
The system has been tested using the Antiviral Screen Dataset. The AIDS database contains
the topological structures of 42,000 chemical compounds that have been tested for evidence of
anti-HIV activity. It contains sparse graphs having from 20 to 270 nodes. Queries were extrac-
ted at random from the AIDS database. Indexing paths with respect to subgraphs may result
more expensive in preprocessing time and indexing space. However, it has been proved that
paths have better filtering end querying time. Results show that a further improvement on
path-index base system is achieved by making use of Suffix Trees. The figure depicts (graph
database and query) index construction and filtering time using a subset of 24000 molecules.
The query size ranges from 5 to 32 edges. The query and the filter time are the average time
over 100 queries of each size. Experiments clearly show that the Suffix Tree representation of
the feature space results much faster than the GraphGrep indexing (called here feature map) in
terms of both index constructions and filtering time. Both indexing methods require the same
amount of space.

Contact : giugno@dmi.unict.it

	Enhancing Graph Database Indexing By Suffix Tree
Structure

