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Introduction

Prediction of protein secondary structure (SS) is a classic problem in computational molecular biology and one of the first suc-
cessful applications of machine learning to bioinformatics. Most available prediction methods use feedforward neural networks
whose input is the multiple alignment profile in a sliding window of residues centered around the target position [6, 4]. By
construction, predictions obtained with these methods are local. Long-range dependencies, on the other hand, clearly play an
important role in this problem. In [2] it was proposed the use of bidirectional recurrent neural networks (BRNN) for the predic-
tion of SS. The architecture in this case allows us to process the sequence as a whole and to “translate” the input profile at each
position into a corresponding output prediction for that position. Theoretically, the output at any position in a BRNN depends on
the entire input sequence and thus a BRNN might actually exploit long-range information. Unfortunately, well known problems
of vanishing gradients do not allow us tolearn these dependencies.

In this paper, we are interested in developing an architecture that can effectively exploit long-range dependencies assuming
some additional information is available to the learner. We start from a rather simple intuitive argument: if the learner had
access to information about which positions pairs are expected to interact, its task would be greatly simplified and it could
possibly succeed. In the case of SS prediction, a reasonable source of information about long-range interaction can be obtained
from contact maps (CM), a graphical representation of the spatial neighborhood relation among amino acids. Of course in
order to obtain a CM the protein structure must be known. In addition, it is well known that backbone atoms’ coordinates can
be reconstructed starting from CMs [7]. Thus, in a sense, using CM information in order to predict SS might appear foolish
since most of the information about the 3D structure of the protein is already contained in the map. However, the following
considerations suggest that this setting is worth investigation:

• Algorithms that reconstruct structure from CMs are based on a potential energy function with many local minima whose
optimization is not straightforward [7]. Thus it is not clear that a supervised learning algorithm can actuallylearn to
recover SS from CMs.

• CMs can be predicted from sequence [3] or can be obtained from structures predicted by ab-initio methods such as Rosetta
[1]. Although accuracy of present methods is certainly not sufficient to provide a satisfactory solution to the folding
problem, predicted maps may still contain useful information to improve the prediction of lower order properties such as
the SS.

• Even if CMs are given, the design of a learning algorithm that can fully exploit their information content is not straight-
forward. For example, Meiler and Baker [5] have shown that SS prediction can be improved by using information about
inter-residue distances. Their architecture is a feedforward network fed byaverageproperty profiles associated with amino
acids that are near in space to the target position. In this way, relative ordering among neighbors in the CM is discarded.

The solution proposed in this paper is based on an extended architecture that receives as an additional input a graphi-
cal description of the pairwise interactions between sequence positions. We call this architecture interaction enriched BRNN
(IEBRNN). Its details are presented in a longer version of this paper.

Results

Prediction from sequence alone

A first set of experiments was performed to obtain a baseline prediction accuracy for the SS problem on this dataset. A “bare
bones” BRNN classifier with multiple alignment profiles as input was used for this purpose. Results of the baseline experiment
are reported in the upper-left corner of Table 1.
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Prediction from CM alone

Here we want to estimate the amount of information about SS the IEBRNN architecture is capable to learn from contacts alone.
As reported in Table 1, we obtainedQ3 ≈ 80% and SOV≈ 73%. These results are quite impressive considered that the classifier
has no knowledge about the 3D conformation of the hydrogen bonded atoms and the physics behind the formation of SS.

Table 1: Performances of the various methods presented in this paper.

BRNN IEBRNN
Q3 SOV

Profiles only 74.6% 66.7%
Profiles + context 82.5% 77.4%

Profiles + context (noγ) 95.9% 94.6%

Q3 SOV
Interactions only 79.9% 73.3%

Profiles + interactions 84.6% 79.3%
Profiles + interactions (noγ) 97.9% 95.5%

Prediction from profiles and contacts together

In this experiment, we trained the IEBRNN with both profiles and contacts as input. For sake of comparison with the results of
Meiler and Baker [5] we also trained a standard BRNN with the same kind of inputs they used. In particular, the spatialcontext
of each residue was computed by averaging the profile of the amino-acids in a sphere of 6Å centered on the residue itself. This
additional input was then given to the standard BRNN together with the usual profile. This method can be seen as a simplified
version of the IEBRNN in which all contacts give the same contribution to a given position. In particular, order among contacts
cannot be distinguished. As can be seen from Table 1, the information about contact ordering is efficiently exploited by the
IEBRNN, which appreciably outperforms the solution based on the average context. Interestingly, prediction accuracy improves
for helices and strands but not for coils.

Effects of interaction robustness

The results of the above experiments show us that IEBRNNs can effectively exploit the information contained in the CM to
improve prediction accuracy. However there is still about 15% residual error rate that would be interesting to explain. We
conjecture that the reliability of the interactions that were injected as an additional input may play a significant role. In facts,
edges in a CM express spatial proximity but do not necessarily imply dependencies between the two close residues. This may be
particularly true in the case of contacts that involve coil residues. Instead, contacts between residues that both belong to helices
or strands can be expected to encode interactions in a more robust way since they are often maintained by hydrogen bonds.

In order to evaluate the effect of interaction robustness we repeated our experiments using more sparse CM where edges only
connect residues that belong to helices or strands. In so doing, we removed about 60% of the edges from interaction graphs.
Results are reported in the last row of Table 1 both for the standard BRNN (fed by profiles and context) and for the IEBRNN.
The error reduction obtained in this way is dramatic. The residual error is comparable to the disagreement between different
SS assignment programs (i.e. DSSP, STRIDE, and DEFINE). These experiments could indicate that part of the information
contained in the CM can be misleading, especially for the shorter segments.
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