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Introduction 
As the microarray technology is emerging as a widely used tool to investigate gene expression and function, 
laboratories over the world  have produced and are producing a huge amount of data, which demand advanced 
and specialized computational tools to process them. Clustering methods have been successfully applied to such 
data to reorganize the data and extract biological information from them. But the classical clustering methods [1] 
such as k-means and hierarchical clustering have some intrinsic limits such as the linear, pair-wise nature of the 
similarity metrics (which fail to highlight non-linear substructures of the data) and the univocal assignment of 
each gene to one cluster (which may fail to highlight cluster-to-cluster relationships) [2]. Here we introduce a 
novel method for clustering microarray data, named Fuzzy Map Clustering (FMC), which may partly overcome 
these limits. 
Basically, the clustering process of FMC starts from identification of an initial set of clusters by calculating the 
“density” around each data point (object), that is, the average proximity of its K nearest other objects (K 
neighbours) and choosing the ones that have the highest density among all their K neighbors. K can be a fixed 
number of choice or the number of neighbors within a distance threshold.  
Then, each object in the dataset is assigned a fuzzy membership to all the defined clusters (a vector containing a 
percentage of membership to all the clusters). Membership is assigned so that similar objects have similar fuzzy 
membership vectors. Membership assignment is optimized by measuring how the fuzzy membership vector of 
one object can be approximated by the vectors of its neighbors.  
Finally, a process based on the merging of adjacent clusters and fuzzy membership reassignment is reiterated 
until the number of clusters is reduced to a fixed one decided by the operator.  
Our computational experiments have shown that FMC can correctly reveal the true cluster structure of the 
dataset if such structure exists, even if the clusters contained in the dataset have arbitrary shape. And perhaps the 
basic idea underlying FMC points out a new way to develop novel clustering methods with good mathematical 
foundation. 

Detailed description of the clustering procedure 
Mathematically speaking, FMC maps data points from their feature space to a fuzzy membership space in such a 
way that the local structure of the original dataset is preserved, and essentially the dataset is clustered according 
to its lower dimensional structure. 

1. Identification of the initial set of clusters 

For each object, its “density” is approximated by K/d, where d is the average distance between that object and its 
K neighbors. Any distance metric can be used (we used Euclidean and Pearson correlation) to estimate the 
density.  Then the initial set of clusters is determined as the objects with local maximum “density”, which means 
that its density is higher than all its neighbors. These objects with local maximum densities are called cluster 
supports, which are the prototypes of clusters. 



 

2. Neighborhood Approximation of Fuzzy Memberships 

Membership assignment is optimized by measuring how the fuzzy membership vector of one object can be 
linearly approximated by the vectors of its neighbors. This idea of linearly approximating the fuzzy memberships 
of neighboring objects resembles that of linearly approximating the lower dimensional embedding coordinates in 
a non-linear embedding method call Locally Linear Embedding (LLE) [3]. 
A simple iterative procedure is applied to find the optimal fuzzy memberships which the overall deviation of the 
fuzzy membership of one object from a linear combination of its neighbors’ fuzzy memberships. In each step of 
this iterative procedure, the fuzzy memberships are updated as  
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3. Merging similar clusters 

After the first two steps, we get an initial set of clusters and fuzzy memberships. There will be some objects with 
high membership degrees in more than one cluster. Two clusters sharing a large number of such objects are very 
close to each other, they must be merged. However, to choose which two clusters to merge, simply counting the 
number of their common objects will not work. So we proposed an alternative way to merge clusters. 
We defined Dentropy of a cluster as the average Shannon entropy of one cluster weighted by the density of each 
object. High Dentropy of a cluster indicates that the set of objects assigned to that cluster could also belong to 
one or more other clusters. So we identify the cluster with the highest Dentropy, and merge it to its nearest 
neighbor. The nearest neighbor cluster is found by calculating the density-weighted fuzzy membership centroid 
of the cluster to be merged, and choose the one with second largest value. The merging of two clusters is done 
not by putting objects from the two clusters together, but by adding up their fuzzy membership degrees. The 
cluster merging is stopped when a pre-defined number of clusters is reached.  

4. Computational experiments 

We have applied FMC to some synthetic datasets and to real gene expression datasets. In the synthetic, 2D 
dataset experiments, where the results can be clearly visualized, FMC shows much better performance than the 
classical clustering methods, since it can identify most clusters correctly even when the clusters are irregular. In 
higher dimension dataset, the most effective way to compare the performance of FMC with that of classical 
methods has still to be defined. For example, by analyzing the mean variance of each cluster, which indicates 
how objects belonging to the same cluster are really similar to each other, we found that FMC is at least as good 
as classical clustering methods. Probably more complex ways to estimate how the FMC approach yields more 
informative clusters need to be implemented. However the basic idea of FMC points out a new way to develop 
novel clustering methods with good mathematical foundation. 
 
 
References 
 
[1] A.K. Jain, M.N. Murty and P.J. Flynn, Data Clustering: A Review. ACM Computing Surveys, Vol.31, 
No.3,1999. 
[2] Yidong Chen, Michael L. Bittner and Edward R. Dougherty, Issues associated with microarray data analysis 
and integration. Nature Genetics,1999. 
Information supplementary to article by Michael Bittner, Jeffrey Trent and Paul Meltzer (Nature Genet. 22, 213–215; 1999) 
[3] Sam T. Roweis and Lawrence K. Saul, Nonlinear Dimensionality Reduction by Locally Linear Embedding. 
Science, 290:2323-2326, 2000. 


