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Introduction 
Non-free cysteines that are not involved in the formation of disulfide bridges are very often bound to prosthetic 
groups that include a metal ion and that play an important role in the function of a protein. The discrimination 
between the presence of a disulfide bridge (DB) or a metal binding site (MBS) in correspondence of a bound 
cysteine is often a necessary step during the NMR spectral assignment process of metalloproteins and its automation 
may significantly help towards speeding up the overall process. Several proteins are known where both situations 
are in principle plausible and it is not always possible to assign a precise function to each cysteine (see e.g. {2,1,5]). 
We formulate the prediction task as a binary classification problem: given a non-free cysteine and information about 
flanking residues, predict whether the cysteine can bind to a prosthetic group containing a metal ion (positive class) 
or it is always bound to another cysteine forming a disulfide bridge (negative 
class).  Firstly, we suggest a nontrivial baseline predictor based on PROSITE pattern hits. Secondly, we introduce a 
classifier fed by multiple alignment profiles and based on support vector machines (SVM)[3]. We show that the 
latter classifier is capable of discovering the large majority of the relevant PROSITE patterns, but is also sensitive to 
signal  in the profile sequence that cannot be detected by regular expressions and therefore outperforms the baseline 
predictor. 

Materials and Methods 
The data for cysteines involved in DB formation were extracted from PDB, while  those for MBS were extracted 
from SWISS-PROT version 41.23, since PDB does not contain enough examples of metal ligands. In the latter case 
we included all entries containing at least one cysteine in a MBS, regardless of the annotation confidence. Intra-set 
redundancy due to sequence similarity was avoided by running the UniqueProt program [6] with hssp distance set to 
zero. Inter-set redundancy was kept in order to handle proteins with both DBs and MBS. It must be remarked that 
while inter-set redundancy can help the learning algorithm by providing additional data for training, it cannot 
favorably bias accuracy estimation since redundant cases should be assigned to opposite classes. We obtained in this 
way 2860 DB cysteines (in 529 chains) and 758 MBS (in 202 chains). Free  cysteines were ignored. 
For the data set described above the base accuracy, given by the frequency of the most common class, is 84.4%. In 
total absence of prior knowledge a predictor that performs better than the baseline is generally considered as 
successful. However, base accuracy does not account for precision/recall rates which are also needed in order to 
have a correct view of the classifier performance. In addition, for the task studied in this paper several well known 
consensus patterns exist that partially encode expert knowledge. For example the 4Fe-4S ferredoxin group is 
associated with the pattern C-x(2)-C-x(2)-C-(x3)-C-[PEG] [7]. It seems reasonable, when possible, to 
make use of them as a rudimentary prediction tool. Thus, in order to compare our prediction method with respect to 
a more interesting baseline than the mere base accuracy, we extracted features that consist of PROSITE [4] pattern 
hits.  We found 199 patterns whose matches with the sequences in our data set contain the position of at least one 
bound cysteine. Many patterns are highly specific but false positives exist and some cysteines match several 
patterns. Thus a prediction rule based on pattern matches is difficult to craft by hand and we used the program C4.5 
to create rules automatically from data. C4.5 induces a decision trees from labeled examples by recursively 
partitioning the instance space, using a greedy heuristic driven by information theoretic considerations [8].  
 
Results and Discussion 
 
Test performances were calculated by three fold cross validation: proteins were divided in three groups, mantaining 
in each group approximately the same distribution of disulfide bridges and different kinds of MBS. Table 1 reports 
our experimental results for PROSITE patterns and the polynomial kernel SVM. Results for the polynomial kernel 
are reported in figure 1(a). Train and test accuracies are plotted for growing size of the context window, with error 
bars for 95% confidence intervals, together to the fraction of support vectors (SV) over the train examples in the 



learned models, which is a rough indicator of the complexity of the learned models.  The most evident improvement 
in test accuracy is obtained for a window of size k=3, and corresponds to the global minimum in the model 
complexity curve with about 56% of training examples as SV.  Detailed results for such window are reported in 
table 1(b).  A deeper analysis of individual predictions showed that the vast majority of predictions were driven by 
the presence of a well conserved CXXC pattern, taken as the indicator of a MBS. This explains the high rate of false 
negatives compared to the total number of negative examples, being most of them cysteines containing the pattern 
but involved in disulfide bridges, while most of the false positives are MBS missing it. The learned pattern is 
actually very common for most bindings involving iron-sulfur, iron-nickel and heme groups, and these kinds of 
MBS are actually predicted with the highest recall. The best accuracy is obtained for a window of size k=17, with a 
strong reduction of false negatives at the cost of a slight increase in the number of MBS predicted as DB.  Figure 
1(b) shows results for growing size of the context window, for a third degree polynomial kernel with McLachlan 
similarity matrix.  While train and test accuracies are similar to those obtained without the similarity matrix (figure 
1(a)), the corresponding models have less SVs, with reductions up to 11\% of the training set. This behaviour is even 
more evident for the Blosum62 substitution matrix (figure 1(c)) where a slight decrease in test accuracy, still within 
the confidence interval, corresponds to a reduction up to 30% of the training set. Note that the fraction of SVs over 
training examples is a loose upper bound on the leave one out error, which is an almost unbiased estimate of the true 
generalization error of the learning algorithm. These kernels are able to better exploit information on residue 
similarity, thus obtaining similar performances with simpler models.  
 

 (a) Polynomial Kernel             (b) Kernel with McLachlan Matrix                  (c) Kernel with Blosum62 Matrix 
 
Fig. 1 SVM results.  Test and train accuracies with 95% confidence intervals are plotted, together to the fraction of SVs over the 
number of training examples, for growing sizes of the window of 2k+1 residues profiles around the target cysteine, with k going 
from 1 to 25. Results are averaged over a three fold cross validation procedure 

Table 1 (a) decision rules learned by c4.5 from patterns extracted from PROSITE. (b)  SVM with a window of size 3. (c) SVM 
with a window of size 17. P is precision, R is recall 

 P R DB MBS   P R DB MBS   P R DB MBS

DB 84% 99% 2845 15  DB 84% 99% 2845 15 DB 84% 99% 2845 15 

MBS 93% 27% 556 202  MBS 93% 27% 556 202 MBS 93% 27% 556 202 

Acc. 84.2% Predicted  Acc. 84.2% Predicted Acc. 84.2% Predicted 
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